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Abstract 

 
The use of Cassie and Baxter’s equation and that of Wenzel have been subject to some criticism of late. It has 
been suggested that researchers use these equations without always considering the assumptions that have 
been made and sometimes apply them to cases that are not suitable. This debate has prompted a 
reconsideration of the derivation of these equations using the concept of parameters for the Wenzel roughness 
and Cassie-Baxter solid surface fractions that are local to the three-phase contact lines. In such circumstances, 
we show the roughness and Cassie-Baxter solid fractions depend not only on the substrate material, but also 
on which part of the substrate is being sampled by the three-phase contact lines of a given droplet. We show 
that this is not simply a theoretical debate, but is one which has direct consequences for experiments on 
surfaces where the roughness or spatial pattern varies across the surface. We use the approach to derive 
formulae for the contact angle observed on a double length scale surface under the assumption that the small-
scale features on the peaks of larger scale features are either wetted or non-wetted. We also discuss the case 
of curved and re-entrant surface features and how these bring the Young’s law contact angle into the formula 
for roughness and the condition for suspending droplets without penetration into the surface. To illustrate the 
use of local parameters, we consider the case of a variation in Cassie-Baxter fraction across a surface 
possessing a homogeneous hydrophobic surface chemistry and discuss the conditions (droplet volume, 
surface hydrophobicity, gradient in superhydrophobicity and contact angle hysteresis) under which a droplet 
may be set into motion.  We show that different contact angles on each side of a droplet of water placed on 
such a surface can generate sufficient lateral force for the droplet to move towards the region of the surface 
with the lowest contact angle. Using an electrodeposited copper surface with a radial gradient in 
superhydrophobicity we exemplify these ideas by showing experimentally that droplets enter into self-
actuated motion and accumulate in the centre of the surface where the wettability is higher. In principle, paths 
can be defined and water droplets can be collected by creating such gradients in superhydrophobicity through 
changes in the lateral topography of the surface. 
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1. Introduction 
Superhydrophobic surfaces constitute one class of wetting problems in which topography amplifies the effect 
of surface chemistry [1]. In the superhydrophobic case, water repellence is emphasized to create extremely 
high contact angles and low contact angle hysteresis. Surfaces with high contact angles and high contact 
angle hysteresis, and surfaces that create superspreading [2,3], superwetting or hemiwicking [4, 5] use similar 
topographic principles, but these latter surfaces emphasize the spreading tendency of a liquid on a given 
substrate material. Many methods exist for creating superhydrophobic surfaces and these have been reviewed 
by a range of authors [6-9]. It is often the case that their properties are discussed with reference to the Cassie-
Baxter and Wenzel models [10-13] and, in particular, with reference to a very specific type of surface 
composed of flat-topped vertical posts [14]. This has led to a common description of superhydrophobicity as 
due to a droplet behaving as if it were sitting on a bed-of-nails (a fakir’s carpet). Whilst it is certainly true that 
a droplet is supported by the surface protrusions below the entirety of the solid surface within the wetted 
perimeter of a droplet, this simplified view appears to have caused confusion with regards to the definition of 
the Cassie-Baxter solid fraction and Wenzel roughness parameter [15-17]. With the maturing of the field of 
superhydrophobicity, such that many materials and methods are now available to create surfaces, it is 
important that topographic amplification of wetting occurring locally at the three-phase contact lines, both at 
the perimeter of the droplet and below the droplet within that perimeter, are understood. One potential area of 
application for superhydrophobic surfaces is droplet transport and here well-developed concepts of 
wettability gradients and actuating forces are required [18, 19]. 
 

In Section 2, wetting on defect and composite surfaces is discussed and this leads on, in Section 3, to 
a consideration of the implications for understanding the Wenzel and Cassie-Baxter models. The principal 
outcome is to emphasize that the Cassie-Baxter fraction and Wenzel roughness parameter are defined locally 
to the three-phase contact lines [16]; similarly the relevant Young’s law contact angle in these two formulae 
relate to the local surface chemistry. In Section 4, we discuss a number of more complex cases, including 
two-length scales, re-entrant surfaces and wetting on spherical beads; spherical beads provide an example of a 
system for which roughness may become a function of the Young’s law contact angle. In Section 5, we 
consider how varying the wettability across a surface by changing the Cassie-Baxter fraction with position 
might be used to generate motion of droplets. Finally, in Section 6, we exemplify some of these ideas by 
briefly presenting an example of a surface where we created a radial gradient in superhydrophobicity using 
electrodeposition of copper so that droplets roll to a central location. Furthermore, we suggest that more 
complex patterns could be used to define paths and tracks for droplet transport [1, 16]. 
 
2. Wetting on Defect and Composite Surfaces 
A fundamental question in wetting is whether processes are local to the three-phase contact lines or whether 
the entireties of the various interfaces need to be taken into account. First consider measuring advancing and 
receding contact angles by using a syringe inserted into the apex of a sessile droplet. This causes a slight 
distortion of the liquid-vapor interface and so prevents axisymmetric drop shape analysis based on the full 
profile of the droplet. An alternative method, used in studies of possible line tension effects [20, 21], is to fill 
the droplet by delivering liquid through a hole in the substrate (fig. 1a). However, the existence of the hole 
now means the droplet sits on a composite surface of the solid substrate and a central area which is the liquid-
filled hole. The presumption is that provided the droplet contact area is wider than the hole, this does not alter 
the contact angles measured at the perimeter of the droplet. Now imagine that as the droplet grows in volume 
it encounters successive changes in surface chemistry from one with a low contact angle to one with a higher 
contact angle, i.e. a surface with radial rings of differing surface chemistry. This experiment has been 
reported in the literature (e.g. [22]) and the contact angles measured, both advancing and receding, are those 
that would be expected for a droplet entirely on a surface with the same surface chemistry as that surface 
chemistry where the perimeter rests upon [23, 24]. Our expectation is that when the droplet perimeter reaches 
the boundary from a lower contact angle to higher contact angle ring, the droplet perimeter will stop 
advancing and the contact angle will increase until suddenly a rapid advance will occur across part of the 
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higher contact angle ring (see also ref. [22]). From these considerations it should, therefore, be clear that 
contact angles are local to the three-phase contact lines; this is a long held view within the literature on 
contact angles (see ref [25]). The phrase “three-phase contact lines” has been chosen carefully to be plural to 
emphasize that there may be more than one such three-phase contact line for a droplet. For example, if in fig. 
1 the tube feeding liquid into the droplet from below was empty of liquid, but was narrow enough and 
sufficiently hydrophobic that liquid from the droplet did not penetrate into it, then a three-phase contact line 
would exist below the droplet; this would be an additional three-phase contact line disconnected from the one 
at the droplet’s external perimeter on the substrate. 
 
 
 
 
 
 
 
 
 

Figure 1. a) Measurement of advancing contact angle, θθθθ, for a droplet on a smooth flat surface (r is 
the droplet contact radius), and b) two equilibrium configurations for a droplet of a fixed volume on a 
smooth flat hydrophilic surface characterized by a Young’s law contact angle θ θ θ θ2

S, with a central 
hydrophobic defect characterized by a Young’s law contact angle θ θ θ θ1

S (r1 and r2 are the droplet contact 
radii for the two droplet configurations). 

 
Now consider a circular hydrophobic defect with, say, θ1

s =110o, within a more hydrophilic region 
having, say, θ2

s =70o, where both contact angles are due to a homogeneous surface chemistry within their 
respective regions. For a given volume of droplet, the total surface free energy can be calculated. For some 
volumes, such as V=1×10-9 m3, we find that provided the central defect is within a certain size range, two 
stable configurations that satisfy a minimum in the surface free energy can exist [16]. The first of these is 
with a droplet sitting entirely on the hydrophobic defect and the second is with the droplet perimeter sitting 
entirely on the more hydrophilic region. Thus, not only is the Young’s law contact angle local to the three-
phase contact line important, but the initial state is also important because it will determine what 
configurations close to that initial state can be sampled by the three- phase contact line to reach an 
equilibrium. 
 
3. Wenzel and Cassie-Baxter Equations with Local Parameters 
We now consider the analogous situation of a rough defect within a smooth surface area with a droplet sitting 
entirely on the defect and maintaining contact with the surface at all points beneath itself (fig. 2a). The 
contact angle, θW, for this situation is described by the Wenzel equation [8], 
 

 eW r θθ coscos =  (1) 

 
where θe is the Young’s law contact angle and r is the Wenzel roughness factor, which is often defined to be 
the ratio of actual area to planar projection of area of the substrate. This implies that roughness is a property 
of the substrate alone, which is clearly not the case, since that would then imply that the extent of smooth area 
completely remote from the vicinity of the droplet would determine the roughness factor. Restricting the 
definition to the area beneath the droplet would give a definition r=Awetted/πrc

2 where rc is the planar contact 
radius. However, this then produces a definition that seems contradictory to the situation discussed for a 
single defect entirely encompassed by a droplet since it implies that the interior away from the three-phase 
contact line matters. The analogous case is fig. 2b whereby the rough patch is entirely within the wetted area  
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Figure 2. Droplet of contact radius rc with its contact line on a) a rough patch of radius ri within a 
smooth flat surface of radius ro, and b) on the smooth flat surface surrounding the rough patch. All 
surfaces are characterized by a Young’s law contact angle θθθθe. 

 
and the droplet perimeter lies entirely on the external smooth area; the rough portion of the surface does not 
influence the contact angle which is given by Young’s law for the smooth area in the vicinity of the droplet 
three-phase contact line. Thus it is the surface areas in the proximity of the three-phase contact line, x, that 
matter and the appropriate definition of roughness is,  
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where ∆Awetted is a small change in wetted area that can be sampled by a three-phase contact line and 
∆Ac=2πrc∆rc is the planar projection of that change. More precisely, it is the first derivative in the wetted area 
with respect to the planar projection of area evaluated at the contact line. Thus, roughness is not an average 
property of the substrate or even of the substrate below the droplet, but is local to the three-phase contact 
line(s) where changes can occur, i.e. r=r(x) where x is used to indicate that values are taken at the three-phase 
contact line. It also emphasizes that the initial state of the droplet from the deposition matters because it 
defines the part of the substrate surface that the three-phase contact line initially samples. 
 

Similar arguments can be made for a surface composed of areas of two different surface chemistries 
(fig. 3). Provided the patchwork of different surface chemistries is entirely encompassed by the droplet (fig. 
3b), only the surface chemistry of the area on which the three-phase contact line sits matters as far as the 
contact angle is concerned. If the three-phase contact line can sample the two different surface chemistries, 
the droplet contact angle, θCB, is defined by the Cassie-Baxter formula, 

 

 2211 coscoscos θθθ ffCB +=  (3) 

 
where θ1 and θ2 are the Young’s law defined contact angles on the two surface types and the f1 and f2 are 
normally defined as the area fractions. The term area fraction could be taken to mean fi=Ai/(A1+A2), where Ai 
are the areas associated with each type of surface chemistry, but if that were to be the case we would be 
implying that the Cassie fractions are global properties of the substrate or of the substrate area beneath the 
droplet. Essentially, the hole for the syringe in fig. 1a would matter. Considering the case of fig. 3b, whereby 
the patchwork of the two types of surfaces is entirely encompassed within the wetted portion of the surface 
and the three-phase contact line sits entirely on the external area which is uniformly of one type of surface 
chemistry, the droplet contact angle is determined by the Young’s law contact angle for that surface. Thus, it 
is the surface areas in the proximity of the three-phase contact line, x, that matter and the appropriate 
definition of Cassie fraction is,  
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where ∆Ai(x) is the change in wetted area of type i that can be sampled by a small three-phase contact line 
change ∆AT(x)=∆A1(x)+∆A2(x). Thus, the Cassie fractions are not average properties of the substrate or even 
of the substrate below the droplet, but are local to the three-phase contact line(s) where changes can occur, 
i.e. fi(x) where x is used to indicate that values are taken at the three-phase contact line. As with the rough 
surface case, it also emphasizes that the initial state of the droplet from the deposition matters because it 
defines the part of the substrate surface that the three-phase contact line can initially sample as it progresses 
towards equilibrium. 
 
 
 
 
 
 
 
 

Figure 3. Cases a) and b) show two possible arrangements for droplets with their contact lines entirely 
on a patch possessing one type of surface chemistry. The existence of several patches with two different 
surface chemistries within the wetted area does not alter the contact angle, which is determined by the 
surface chemistry at the contact line. 

 
The fundamental conclusion from these considerations is that the Wenzel roughness parameter, the 

Cassie fractions and the Young’s law contact angles in the Wenzel and Cassie-Baxter formulae are local to 
the three-phase contact line(s) and not global properties of the substrate or of the area beneath the droplet, i.e. 

 

 )(cos)()(cos xxrx eW θθ =  (5) 

 

 )(cos)()(cos)()(cos 2211 xxfxxfxCB θθθ +=  (6) 

 
where the functional dependence on the location of the three-phase contact line is given by the (x) notation. 
When the Cassie-Baxter formula is applied to a surface consisting of a simple flat-topped post-type structure, 
so that θ1=θe, θ2=180o, f1(x)=f(x) and f2(x)=(1-f(x)), eq. (6) can be written as, 
 

 ))(1()(cos)()(cos xfxxfx eCB −−= θθ  (7) 

 
While these conclusions have been justified by comparison to a surface with a defect, it is also possible to 
more rigorously derive these conclusions (see ref [16]). 
 

Arguments about wetting using surfaces visualized using a cartoon, such as fig. 3a, do not fully 
represent the 3-D situation in which a droplet exists. If we translate the axial symmetry for the droplet to the 
surface, the surface becomes a set of concentric rings with a droplet at its centre. The small change ∆A(x) that 
a three-phase contact line can sample is then unlikely to cover one period of the surface and unless the 
droplet’s three-phase contact line is at the edge of a ring, the small change will only sample one type of 
surface. The Cassie-Baxter formula can be applied, but one of the fi is unity and the other vanishes, resulting 
in a contact angle given by Young’s law for that surface type. Use of the local version of the Cassie-Baxter 
formula (eq. 6), therefore, involves an assumption that the small change ∆A(x) is, on average, equivalent to 
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one period of the surface. For a droplet on a surface that does not have a symmetry in how the patches of 
different surface types are distributed and for a droplet much larger than the patch size and visibly 
demonstrating an approximately circular three-phase contact line, this might be a reasonable assumption [16] 
although there is no proof that these conditions alone are sufficient. Drops of comparable size to the patch 
sizes and ones displaying facets may not be well described by eq. (6). In addition, these considerations do not 
capture the full complexity that occurs between the interplay of local surface feature shape, distribution and 
organization, and the advancing and receding contact angles important for the design of practical liquid-
shedding surfaces [26]. 
 
4. Dual Length Scales and Re-entrant Surfaces 
Derivations of the results in the previous section using minimisation of changes in surface free energy for a 2-
D flat-topped post-type structure have previously been presented [16]. In this section, we begin by using the 
same approach to consider the slightly more complicated cases of multiple length scales. Consider a post-type 
surface, but with the tops of the posts themselves possessing a post-type structure. The three-phase contact 
line may advance across one period, ∆Ap(x) of the large-scale post structure, characterised by a local Cassie 
fraction fL(x)= ∆Ap

Top(x)/ (∆Ap
Top(x)+ ∆Ap

Bottom(x)) where the subscript L indicates large-scale structure, the 
superscript p indicates planar projections of areas and the “Top” and “Bottom” refer to the large-scale post 
structure.  
 
4.1 Top-Filled Case  
Focussing on the wetting of the smaller scale structure on the top of each large post, we can imagine the 
idealized situation in which either it is completely wetted or there is no penetration by the liquid. For the first 
case, corresponding to the tops being filled, the surface free energy change, ∆F(x), is, 
 

 )(cos)())(1()()()()()( xAxAxfxAxfxrxF p
LV

p
LLV

p
LSSVSL ∆+∆−+∆−=∆ θγγγγ  (8) 

 
where the γij are the interfacial tensions and rS(x) is the local small-scale roughness at the top of the posts 
(indicated by the subscript S on the roughness parameter). Setting this surface free energy change to zero and 
using the usual definition of the Young’s law contact angle, cosθe=(γSV -γSL)/γLV, we find that the observed 
contact angle, θObs, is given by, 
 

 ))(1()(cos)()()(cos xfxxfxrx LeLSObs −−= θθ  (9) 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Changes in surface free energy as a contact line advances over a two length scale structure 
assuming liquid penetrates the small-scale structure at the top of posts, but does not penetrate the larger 
scale structure. The roughness at the top of posts is characterized by a Wenzel parameter, rS, and the 
larger scale structure is described by a Cassie fraction, fL. 
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4.2 Top-Empty Case  
Now consider the second case, whereby the small-scale roughness at the top of each post of the larger scale 
structure is not penetrated by the liquid. Essentially, the top of each post in the large-scale structure 
corresponds to a Cassie-Baxter state rather than a Wenzel state and this is characterized by a solid fraction 
fS(x), where the subscript S indicates the Cassie fraction for the small-scale structure at the top of a post. The 
surface free energy change is then, 
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 (10) 

 
Setting this surface free energy change to zero and using the usual definition of the Young’s law contact 
angle and grouping terms, we find that the observed contact angle is given by, 
 

 ))(1())](1()(cos)()[()(cos xfxfxxfxfx LSeSLObs −−−−= θθ  (11) 

 
 
 
 
 
 
 
 
 
 

Figure 5.  Changes in surface free energy as a contact line advances over a two length scale structure 
assuming liquid does not penetrate either the small-scale structure at the top of posts or the larger scale 
structure. The small-scale structure at the top of posts is described by a Cassie fraction parameter, fS, and 
the larger scale structure is described by a Cassie fraction, fL. 

 
4.3 Transformation Formulae  
Equations (9) and (11) represent different assumptions about the wetting state of the tops of the posts in the 
large scale structure. The formulae can be related back to the single length scale formulae (eq. 5 and eq. 7) by 
thinking in terms of successive transformations due to the two length scale structures. In the case of the top-
filled situation, the Young’s law contact angle for the smooth solid, θe(x), is first transformed to a local 
Wenzel contact angle, θW(x), using the local roughness factor, rS(x), existing at the top of the posts. 
Subsequently this local Wenzel contact angle is transformed via the Cassie-Baxter formula (eq. 7) using the 
solid fraction, fL(x) for the large scale structure and the Wenzel contact angle in place of the Young’s law 
contact angle, i.e. 
 

 Obs
xf

W
xr

e
Lxx θθθ  →→ )()( )()(  (12) 

 
In the case of the top-empty situation, the Young’s law contact angle for the smooth solid, θe(x), is 

first transformed to a local Cassie-Baxter contact angle, θCB(x), using the local Cassie fraction for the small 
scale structure, fS(x), existing at the top of the posts. Subsequently this local Cassie-Baxter contact angle is 
transformed via the Cassie-Baxter formula (eq. 5) using the solid fraction, fL(x), for the large scale structure 
and the Cassie-Baxter contact angle from the small-scale structure in place of the Young’s law contact angle, 
i.e. 

 Obs
xf

CB
xf

e
LS xx θθθ  → → )()( )()(  (13) 
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More complex wetting situations including roughness at the base of the large-scale structure could be 
considered using this approach based on minimising surface free energy changes. For example, having 
roughness at the base of large posts in a situation whereby tops of posts are completely wetted, but the large 
scale structure is a Cassie-Baxter state, would not lead to any change to eq. (12). However, if the second 
transformation was a Wenzel one, a roughness at the base of the large scale structure would have an effect. 
 
4.4 Curved Features and Re-entrant Shapes 
Superhydrophobic effects for curved surfaces have a long history because of the origin of the subject in the 
water repellency of fibers and textiles. Indeed, the original Cassie-Baxter formula was based on cylindrical 
shapes and used a formula similar to Eq. (9) with both a roughness factor and a Cassie-fraction [10]. One 
difference is that the roughness factor, which really represents the extra length of wetted area compared to a 
planar projection, is related to how far down a curve is wetted and this itself depends on the local Young’s 
law contact angle. Thus, the roughness factor should be written as r=r(x,θe(x)) indicating a dependence on the 
surface chemistry (and liquid since that can also result in a different Young’s law contact angle) as well as the 
physical location. The impact of this on the wetting of spherical beads has been considered in the literature 
[27, 28] and is essentially an application of the transformation law given by eq. [12]. A single layer of beads 
is able to suspend a liquid even when the Young’s law contact angle approaches 0o. If there are multiple 
layers and the beads are hexagonally close-packed, a liquid will imbibe into the bead pack under capillary 
forces once the contact angle falls below 50.8o, but not before unless pressure or gravity is considered as a 
driving force. This contact angle corresponds to the point at which the penetrating front of the liquid touches 
a bead from the next layer below [29]. The use of superhydrophobic ideas to describe soil, when regarded as 
bead packs, was first proposed in ref [27] and more recently a complete theoretical analysis based on eq. (12) 
and an experimental comparison have been carried out [28]. Recognition of the importance of inward (re-
entrant) curves, such as observed with bead packs, in the ability of superoleophobic surfaces to suspend 
liquids with Young’s law contact angles significantly below 90o has recently been reported in [30].  
  
5. Gradient Superhydrophobic Surfaces 
It has long been known that on surfaces with variations in surface chemistry droplets move towards regions of 
lower wettability (see ref [31] and references therein). In an earlier report we suggested that lateral variation 
in topography to create a variation in superhydrophobicity should also generate droplet motion even when the 
surface chemistry was homogeneous [1, 32]. A number of reports have considered this problem 
experimentally with varying levels of success [32-35] and there has been at least one attempt to model this 
theoretically [33]. Lithographic approaches have tended to lead to droplets that are unable to move unless 
energy is inputted via, e.g., vibration [33], but such surfaces have been shown to be useful in inducing 
asymmetric rebounds from impacting droplets [37]. 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The concept of inducing motion by a gradient in superhydrophobicity achieved using a 
variation in lateral scale topography. The magnitude of the driving force, given by γLV(cosθL-cosθR) 
where γLV is the liquid-vapor surface tension and θL and θR  are the observed contact angles on the left 
and right hand sides of the droplet, must overcome contact angle hysteresis. 
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The basic concept of lateral gradient forces in superhydrophobicity is shown schematically in fig. 6. 
In this case, the horizontal spacing between features is progressively decreased across a surface so that the 
contact angles at the left-hand and right-hand sides of the droplet, θL, and θR, differ by a small amount. The 
driving force per unit length of contact line is then γLV(cosθR-cosθL,) and, assuming the surface chemistry is 
homogeneous,  this can be written using the local form of the Cassie-Baxter equation as, 

 

 ]cos1)][()([/ eLRLV xfxflengthForce θγ +−=  (14) 
 

Since xR=xo+rc and xL=xo-rc , where xo is the centre coordinate of the droplet in the contact plane and rc is the 
contact diameter which is small, the local Cassie fractions can be expanded in terms of the gradient in Cassie 
fraction, 

 
oxx

ecLV dx

df
rlengthForce

=







+= )cos1(2/ θγ  (15) 

 

If we assume our droplet is a spherical cap with a small contact area we can write, 
 

 )cos1)((222 eoc xfRr θ+≈  (16) 

 
where f(xo) is the average Cassie fraction between the left-hand and right-hand sides of the droplet. Hence, the 
force per unit length of contact line becomes, 

 
oxx

eoLV dx

df
xfRlengthForce

=







+= 2/3)cos1()(22/ θγ  (17) 

 

For a droplet to move, this force needs to exceed the force arising from contact angle hysteresis. There are a 
range of possible models relating contact angle hysteresis to the Cassie fraction including one based on the 
Cassie-Baxter formula [38] and a more fundamental defect based model due to Joanny and de Gennes 
[39,40]. In the defect based model for contact angle hysteresis, the pinning force per unit length is given by 
the combination -γLVf(x)logef(x) and so it scales with the density of defects multiplied by a logarithmic 
correction. Using this with eq. (17) and rearranging, we find the following condition for the gradient in Cassie 
fraction for motion, 

 
2/3)cos1(22

)(log)(

e

oeo

xx R

xfxf

dx

df

o
θ+

−
>









=

 (18) 

 
This derivation is far from sophisticated and does not take into account shape changes around the 

entire contact perimeter, which can be expected to change overall constants, but it does provide an attempt to 
understand a number of factors preventing or initiating motion. For example, if the average Cassie fraction, 
f(xo), is made smaller so that the droplet is in a stronger superhydrophobic state, the gradient in Cassie 
fraction needed to initiate motion can be smaller. Similarly, a lower gradient is needed when the spherical 
radius, R, is larger. Larger volume droplets roll more easily, not because of gravity, but because the contact 
radius, rc, is larger. Increasing the Young’s law contact angle also reduces the need for larger gradients in the 
Cassie fraction. 
 
6. An Example Gradient Surface 
Considerations in the previous sections suggest self-actuated motion and definition of paths should be 
possible simply by varying the superhydrophobicity through topographic control and without changing 
surface chemistry. In this section we provide one simple experimental example of such a surface. If a widely 
spaced superhydrophobic surface texture is surrounded by a more narrowly spaced superhydrophobic surface 
texture a drop should experience a force so that it tends to roll onto the area with the more closely spaced 
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texture provided contact angle hysteresis can be overcome (fig. 6). The variation in lateral spacing will lead 
to a patterning of the effective surface free energy and hence can be used to define regions and paths on the 
surface [1]. A similar approach could be used with the Wenzel equation, but here we focus only on the 
Cassie-Baxter situation. To investigate this experimentally we modified a previously reported 
electrodeposition method that uses diffusion limited aggregation to create a fractally rough superhydrophobic 
copper surface because it can produce surfaces having an exceptionally low contact angle hysteresis [41]; 
stabilising even very small droplets on these surfaces is difficult. We also investigated square post based 
surfaces, but were unable to achieve self-actuated motion of droplets. 
 

 
 
 

 
 
 

Figure 7. Self-initiated rolling of a water droplet on a copper surface possessing a gradient in 
superhydrophobicity. There is no significant overall change in average substrate height from the edge to 
the centre of the copper plate. 

 
Our copper-based surface was produced using a mechanical cantilever device with two small DC 

motors to rotate and elevate the substrate whilst it was half immersed in a copper electroplating solution (as 
described in ref [41]). Samples were produced using different combinations of starting substrate material, 
anode material, power supply, rotation speed and elevation rate. This approach produced copper plates with a 
radial gradient in superhydrophobicity (θ∼115o in the centre to significantly higher than 160o at the edge) so 
that drops would roll to the centre and pool, thus providing a water collection plate. This approach was highly 
successful with small droplets released from a hydrophobised needle of a microsyringe at the edge of the 
plate, always starting a self-initiated roll to the centre (fig. 7 is an image sequence showing a small droplet of 
water being deposited and rolling to the centre). When droplets were released so that they skirted the central 
part of the plate, they underwent several transits back and forth until they came to rest at the centre of the 
plate. We characterised our surfaces by contact profilometry and SEM imaging and established that the 
change in vertical height of the surface from edge to centre (a 2 cm distance) was below 25 µm (fig. 8a). The 
contact angle hysteresis was difficult to quantify across the sample, but to provide an estimate we tilted the 
surface radially such that a droplet could be stabilised at locations radially from the centre and we then 
measured the advancing and receding angles using a side profile view tangential to the radial direction 
(contact angle hysteresis is shown in fig. 8b). We also estimated the tilt angle needed to prevent a roll and this 
was less than 1o at the edge of the plate. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. a) Surface topography profile measured along different radial lines, b) variations of contact 
angle hysteresis (y-axis) across sample from centre to edge (x-axis) estimated using radial view and 
tilting of table tangential to radial direction.  
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7. Conclusion 
In this work we have emphasized that the Wenzel roughness parameter and the Cassie solid surface fractions 
are quantities local to the three-phase contact line and are not global parameters of the substrate or even of the 
substrate beneath a droplet. We have shown how the surface free energy derivations that underpin this view 
can provide transformation formula for multiple length scales and re-entrant surfaces based upon the Wenzel 
and Cassie-Baxter formulae. We have considered how the local view of the Cassie fraction can provide a 
condition for self-actuated droplet motion and have shown that a simple surface with a gradient in 
superhydrophobicity can initiate and direct droplet motion. More complex paths for use within droplet 
microfluidics could be designed using these principles and similar ideas could be used for droplets in Wenzel 
configurations and for hemi-wicking liquids. 
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