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Abstract

The use of Cassie and Baxter’'s equation and thétesfzel have been subject to some criticism of lateas
been suggested that researchers use these equatibost always considering the assumptions thaeha
been made and sometimes apply them to cases thahar suitable. This debate has prompted a
reconsideration of the derivation of these equatiasing the concept of parameters for the Wenzgjhoess
and Cassie-Baxter solid surface fractions thatara to the three-phase contact lines. In sudatuaistances,
we show the roughness and Cassie-Baxter soliddrexctiepend not only on the substrate material atsat
on which part of the substrate is being samplethbythree-phase contact lines of a given droplet.show
that this is not simply a theoretical debate, lsubme which has direct consequences for experinmants
surfaces where the roughness or spatial pattefiesvacross the surface. We use the approach teederi
formulae for the contact angle observed on a dolgigth scale surface under the assumption thagrtiad!-
scale features on the peaks of larger scale featreeeither wetted or non-wetted. We also disthesgase
of curved and re-entrant surface features and hegetbring the Young’s law contact angle into tirenfila
for roughness and the condition for suspendingldtspvithout penetration into the surface. To titate the
use of local parameters, we consider the case wriation in Cassie-Baxter fraction across a swfac
possessing a homogeneous hydrophobic surface dheraisd discuss the conditions (droplet volume,
surface hydrophobicity, gradient in superhydropbiiand contact angle hysteresis) under whichopldt
may be set into motion. We show that differenttaohangles on each side of a droplet of wateregolam
such a surface can generate sufficient laterakféoc the droplet to move towards the region ofghdace
with the lowest contact angle. Using an electroddépd copper surface with a radial gradient in
superhydrophobicity we exemplify these ideas bywshg experimentally that droplets enter into self-
actuated motion and accumulate in the centre oftiniece where the wettability is higher. In prpiej paths
can be defined and water droplets can be colldgfedteating such gradients in superhydrophobi¢itgugh
changes in the lateral topography of the surface.
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1. Introduction

Superhydrophobic surfaces constitute one classetiing problems in which topography amplifies tlleet

of surface chemistry [1]. In the superhydropholase; water repellence is emphasized to creatensadye
high contact angles and low contact angle hysteré&iirfaces with high contact angles and high ocbnta
angle hysteresis, and surfaces that create supadipg [2,3], superwetting or hemiwicking [4, Spusmilar
topographic principles, but these latter surfaceplesize the spreading tendency of a liquid onvangi
substrate material. Many methods exist for creasinqmerhydrophobic surfaces and these have beeswedi

by a range of authors [6-9]. It is often the cdwd their properties are discussed with referendhda Cassie-
Baxter and Wenzel models [10-13] and, in particulaith reference to a very specific type of surface
composed of flat-topped vertical posts [14]. This led to a common description of superhydrophtybas
due to a droplet behaving as if it were sittingadmed-of-nails (a fakir's carpet). Whilst it is tznly true that

a droplet is supported by the surface protrusiaglevb the entirety of the solid surface within thetted
perimeter of a droplet, this simplified view appetr have caused confusion with regards to thenitief of

the Cassie-Baxter solid fraction and Wenzel rougbrgarameter [15-17]. With the maturing of thedfief
superhydrophobicity, such that many materials arethods are now available to create surfaces, it is
important that topographic amplification of wettingcurring locally at the three-phase contact lifegh at
the perimeter of the droplet and below the dropi¢hin that perimeter, are understood. One potéatiea of
application for superhydrophobic surfaces is droglansport and here well-developed concepts of
wettability gradients and actuating forces are meqgu[18, 19].

In Section 2, wetting on defect and composite sdds discussed and this leads on, in Sectiom 3, t
a consideration of the implications for understagdihe Wenzel and Cassie-Baxter models. The piihcip
outcome is to emphasize that the Cassie-Baxtetidraand Wenzel roughness parameter are definediyoc
to the three-phase contact lines [16]; similarly televant Young's law contact angle in these taronfilae
relate to the local surface chemistry. In Sectipnvéd discuss a number of more complex cases, imgud
two-length scales, re-entrant surfaces and wettimgpherical beads; spherical beads provide anprarha
system for which roughness may become a functiothefYoung’s law contact angle. In Section 5, we
consider how varying the wettability across a stefly changing the Cassie-Baxter fraction with tarsi
might be used to generate motion of droplets. Kinal Section 6, we exemplify some of these idbgs
briefly presenting an example of a surface whereckeated a radial gradient in superhydrophobicging
electrodeposition of copper so that droplets rollat central location. Furthermore, we suggest thaite
complex patterns could be used to define pathdrac#ls for droplet transport [1, 16].

2. Wetting on Defect and Composite Surfaces

A fundamental question in wetting is whether preessare local to the three-phase contact lineshether
the entireties of the various interfaces need ttaken into account. First consider measuring acingnand
receding contact angles by using a syringe insartedthe apex of a sessile droplet. This causskgat
distortion of the liquid-vapor interface and sovmets axisymmetric drop shape analysis based offuthe
profile of the droplet. An alternative method, usedtudies of possible line tension effects [20)], & to fill
the droplet by delivering liquid through a holetive substrate (fig. 1a). However, the existencthefhole
now means the droplet sits on a composite surfatteecsolid substrate and a central area whichadiguid-
filled hole. The presumption is that provided tmepdet contact area is wider than the hole, thissduot alter
the contact angles measured at the perimeter afrtidet. Now imagine that as the droplet growsatume
it encounters successive changes in surface chgrrisin one with a low contact angle to one withigher
contact angle, i.e. a surface with radial ringsddfering surface chemistry. This experiment hagrbe
reported in the literature (e.g. [22]) and the ashtangles measured, both advancing and recedinghe@se
that would be expected for a droplet entirely osugface with the same surface chemistry as théar
chemistry where the perimeter rests upon [23, @4}. expectation is that when the droplet perimetaches
the boundary from a lower contact angle to highentact angle ring, the droplet perimeter will stop
advancing and the contact angle will increase wutddenly a rapid advance will occur across pathef
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higher contact angle ring (see also ref. [22]).nfFrihese considerations it should, therefore, bardleat
contact angles are local to the three-phase colitad; this is a long held view within the litena¢ on
contact angles (see ref [25]). The phrase “threzseltontact lines” has been chosen carefully folural to
emphasize that there may be more than one sudhphigse contact line for a droplet. For examplin fig.

1 the tube feeding liquid into the droplet from d»elwas empty of liquid, but was narrow enough and
sufficiently hydrophobic that liquid from the drapldid not penetrate into it, then a three-phasd¢act line
would exist below the droplet; this would be anitiddal three-phase contact line disconnected ftloenone

at the droplet’s external perimeter on the substrat

a)

Figurel. a) Measurement of advancing contact an@ldpr a droplet on a smooth flat surfaceig
the droplet contact radius), and b) two equilibrioamfigurations for a droplet of a fixed volume an
smooth flat hydrophilic surface characterized byyeung's law contact angl&®, with a central
hydrophobic defect characterized by a Young's lantact angled.® (r, andr, are the droplet contact
radii for the two droplet configurations).

Now consider a circular hydrophobic defect withy,s&° =11, within a more hydrophilic region
having, say,8° =7C°, where both contact angles are due to a homogemaatace chemistry within their
respective regions. For a given volume of droplet, total surface free energy can be calculated séme
volumes, such a¥=1x10° m®, we find that provided the central defect is witlai certain size range, two
stable configurations that satisfy a minimum in sugface free energy can exist [16]. The firsthadse is
with a droplet sitting entirely on the hydrophoblefect and the second is with the droplet perimgiténg
entirely on the more hydrophilic region. Thus, ooty is the Young's law contact angle local to these-
phase contact line important, but the initial stagealso important because it will determine what
configurations close to that initial state can l@ngled by the three- phase contact line to reach an
equilibrium.

3. Wenzel and Cassie-Baxter Equationswith Local Parameters

We now consider the analogous situation of a raleflct within a smooth surface area with a drogilting
entirely on the defect and maintaining contact wtk surface at all points beneath itself (fig..ZE)e
contact angle@y, for this situation is described by the Wenzelagin [8],

cosé,, =rcosb, (1)

where @, is the Young's law contact angle and the Wenzel roughness factor, which is oftenngef to be
the ratio of actual area to planar projection @aaof the substrate. This implies that roughnesspsoperty
of the substrate alone, which is clearly not thee¢aince that would then imply that the extergroboth area
completely remote from the vicinity of the droplebuld determine the roughness factor. Restrictimgy t
definition to the area beneath the droplet would @ definitionr=Ayued/Tr 2 Wherer. is the planar contact
radius. However, this then produces a definitioat theems contradictory to the situation discussechaf
single defect entirely encompassed by a droplaetesinimplies that the interior away from the thpease
contact line matters. The analogous case is figvi#reby the rough patch is entirely within the tedtarea



a) b)
6; ‘ || i [
— [ —_— [

— 1 —_— 1

Figure 2. Droplet of contact radius, with its contact line on a) a rough patch of radiuwithin a
smooth flat surface of radiug, and b) on the smooth flat surface surroundingrthegh patch. All
surfaces are characterized by a Young’s law coiatagle 8.

and the droplet perimeter lies entirely on the exkesmooth area; the rough portion of the surtdmes not
influence the contact angle which is given by Ydarigw for the smooth area in the vicinity of theoglet
three-phase contact line. Thus it is the surfaeasain the proximity of the three-phase contad, kn that
matter and the appropriate definition of roughrisss

X) - AA\Netted (X)

r
A (X)

(2)

where AAueed 1S @ small change in wetted area that can be sampy a three-phase contact line and
AA=2TT Ar is the planar projection of that change. More i3y, it is the first derivative in the wetted are
with respect to the planar projection of area eat&ld at the contact line. Thus, roughness is n@vanage
property of the substrate or even of the substratew the droplet, but is local to the three-phesetact
line(s) where changes can occur, i (x) wherex is used to indicate that values are taken athtfeetphase
contact line. It also emphasizes that the inittakes of the droplet from the deposition mattersabse it
defines the part of the substrate surface thathitee-phase contact line initially samples.

Similar arguments can be made for a surface cordpafareas of two different surface chemistries
(fig. 3). Provided the patchwork of different sundachemistries is entirely encompassed by the er¢pg.
3b), only the surface chemistry of the area on Wwhie three-phase contact line sits matters aadahe
contact angle is concerned. If the three-phaseacbiine can sample the two different surface clkams,
the droplet contact anglé;s, is defined by the Cassie-Baxter formula,

cosd,; = f, cosd, + f, cosb, (3)

where 6, and & are the Young’'s law defined contact angles ontte surface types and theandf, are
normally defined as the area fractions. The terga draction could be taken to meaA/(A+A), whereA;
are the areas associated with each type of sudaemistry, but if that were to be the case we wdéd
implying that the Cassie fractions are global prapse of the substrate or of the substrate areadibrthe
droplet. Essentially, the hole for the syringeig fla would matter. Considering the case of fly.\Bhereby
the patchwork of the two types of surfaces is ehtiencompassed within the wetted portion of théase
and the three-phase contact line sits entirelyheneixternal area which is uniformly of one typesofface
chemistry, the droplet contact angle is determimgthe Young’s law contact angle for that surfadeus, it

is the surface areas in the proximity of the thwhase contact linex, that matter and the appropriate
definition of Cassie fraction is,



_0A
fi(x) = AA (%) (4)

whereAA|(X) is the change in wetted area of typiat can be sampled by a small three-phase coinact
changeAA:(X)=AA1(X)+AA,(X). Thus, the Cassie fractions are not average piepef the substrate or even
of the substrate below the droplet, but are looaht three-phase contact line(s) where changesaaur,
i.e. fi(x) wherex is used to indicate that values are taken athheetphase contact line. As with the rough
surface case, it also emphasizes that the init&é f the droplet from the deposition mattersabese it
defines the part of the substrate surface thathttee-phase contact line can initially sample ggdgresses
towards equilibrium.

a) b)

Figure 3. Cases a) and b) show two possible arrangementirdpiets with their contact lines entirely
on a patch possessing one type of surface chemldigyexistence of several patches with two differe
surface chemistries within the wetted area doesaltet the contact angle, which is determined &y th
surface chemistry at the contact line.

The fundamental conclusion from these consideratisrthat the Wenzel roughness parameter, the
Cassie fractions and the Young's law contact anglebe Wenzel and Cassie-Baxter formulae are lazal
the three-phase contact line(s) and not globalgrtas of the substrate or of the area beneattrthydet, i.e.

cos8,, (X) = r(x) cosb,(x) (5)
CoS (X) = f,(X) Cos, (X) + f,(x) costl, (X) ®)

where the functional dependence on the locatioth@fthree-phase contact line is given by thenptation.
When the Cassie-Baxter formula is applied to aage@riconsisting of a simple flat-topped post-typecstire,
so thatg=8,, =180, f,;(xX)=f(x) andf,(x)=(1f(x)), eg. (6) can be written as,

€080 (X) = f(x) cosE, (x) = (L= f (X)) (7)

While these conclusions have been justified by @mmspn to a surface with a defect, it is also fgwesio
more rigorously derive these conclusions (seel@f)[

Arguments about wetting using surfaces visualizethgsa cartoon, such as fig. 3a, do not fully
represent the 3-D situation in which a droplet &xiff we translate the axial symmetry for the debpo the
surface, the surface becomes a set of concentgs with a droplet at its centre. The small chah@é) that
a three-phase contact line can sample is thenalylilo cover one period of the surface and unléss t
droplet's three-phase contact line is at the edga ong, the small change will only sample oneetyqf
surface. The Cassie-Baxter formula can be apgiietipne of thd; is unity and the other vanishes, resulting
in a contact angle given by Young's law for thatface type. Use of the local version of the Ca8zigter
formula (eq. 6), therefore, involves an assumptiwat the small chang®A(X) is, on average, equivalent to



one period of the surface. For a droplet on a sarthat does not have a symmetry in how the patohes
different surface types are distributed and for raptét much larger than the patch size and visibly
demonstrating an approximately circular three-plwasgact line, this might be a reasonable assump1i6]
although there is no proof that these conditiolmnalare sufficient. Drops of comparable size toghaeh
sizes and ones displaying facets may not be wstirdeed by eq. (6). In addition, these considenstido not
capture the full complexity that occurs betweenititerplay of local surface feature shape, distidsuand
organization, and the advancing and receding cbratagles important for the design of practical igu
shedding surfaces [26].

4. Dual Length Scales and Re-entrant Surfaces

Derivations of the results in the previous sectising minimisation of changes in surface free epérga 2-

D flat-topped post-type structure have previouserb presented [16]. In this section, we begin ligguthe
same approach to consider the slightly more comgtt cases of multiple length scales. Considesatype
surface, but with the tops of the posts themsebassessing a post-type structure. The three-pladaat
line may advance across one periddP(x) of the large-scale post structure, characteriged local Cassie
fraction fL(X)= AAP1ep(X)/ (AAPTo(X)+ AA sqom(X)) Where the subscrift indicates large-scale structure, the
superscripip indicates planar projections of areas and the *Tay “Bottom” refer to the large-scale post
structure.

4.1 Top-Filled Case

Focussing on the wetting of the smaller scale tiracon the top of each large post, we can imatfiee
idealized situation in which either it is complgteletted or there is no penetration by the ligéiol the first
case, corresponding to the tops being filled, thiéase free energy chang¥(x), is,

AF(X) = (ys_ - yw)rs(x) fL (X)AAP(X) Vv (1_ fL (X))AAP(X) Vv COS&AP(X) 8)

where they; are the interfacial tensions angx) is the local small-scale roughness at the tofhefposts
(indicated by the subscri@on the roughness parameter). Setting this suffaeeenergy change to zero and
using the usual definition of the Young's law carmtangle, co=()s, -)a)/ 1v, we find that the observed
contact anglefys, is given by,

COSOs (X) = 15(X) f (X) cOSE,(X) = (L= f, (X)) )

Figure4. Changes in surface free energy as a contact éimanges over a two length scale structure
assuming liquid penetrates the small-scale straatithe top of posts, but does not penetrateatigen
scale structure. The roughness at the top of psstharacterized by a Wenzel parametgrand the
larger scale structure is described by a Cassitidraf,.



4.2 Top-Empty Case

Now consider the second case, whereby the smd#-soaghness at the top of each post of the lssgale
structure is not penetrated by the liquid. Esséntidhe top of each post in the large-scale strect
corresponds to a Cassie-Baxter state rather thaferazel state and this is characterized by a scdidtibn
fs(X), where the subscri@indicates the Cassie fraction for the small-sstilecture at the top of a post. The
surface free energy change is then,

AF(X) = (Yo — Vo) Ts(X) FL(X)AAP (X) +

(10)
Y@= f.00) + fL A~ Fs(X))IAA® (X) + y1y COSENA ()

Setting this surface free energy change to zeroumimg the usual definition of the Young's law caett
angle and grouping terms, we find that the obsecagdact angle is given by,

COSBnns (X) = fL (N[ F5(X) OSE, (X) = (L= F5(X))] = A~ fL (X)) (11)

Figure5. Changes in surface free energy as a contactativances over a two length scale structure
assuming liquid does not penetrate either the ssoale structure at the top of posts or the lasgate
structure. The small-scale structure at the toposts is described by a Cassie fraction paranfetand

the larger scale structure is described by a Céssiton,f,.

4.3 Transformation Formulae

Equations (9) and (11) represent different assumptabout the wetting state of the tops of thespimsthe
large scale structure. The formulae can be reladed# to the single length scale formulae (eq. 5eand’) by
thinking in terms of successive transformations authe two length scale structures. In the caghetop-
filled situation, the Young’s law contact angle fibre smooth solidA(x), is first transformed to a local
Wenzel contact angle@\(x), using the local roughness factog(x), existing at the top of the posts.
Subsequently this local Wenzel contact angle issfiaamed via the Cassie-Baxter formula (eq. 7) gisie
solid fraction,f.(x) for the large scale structure and the Wenzetaxt angle in place of the Young's law
contact angle, i.e.

6,(x) 01~ 8, (0 -8, (12)

In the case of the top-empty situation, the Youraig contact angle for the smooth sol&(x), is
first transformed to a local Cassie-Baxter contawile, &5(X), using the local Cassie fraction for the small
scale structurefg(x), existing at the top of the posts. Subsequetily lbcal Cassie-Baxter contact angle is
transformed via the Cassie-Baxter formula (eq.Sigithe solid fractionf, (x), for the large scale structure
and the Cassie-Baxter contact angle from the ssoale structure in place of the Young's law contadile,
ie.

6.(x) 0 . O (x) 0 LS. Gos (13)



More complex wetting situations including roughnasshe base of the large-scale structure could be
considered using this approach based on minimisingace free energy changes. For example, having
roughness at the base of large posts in a situati@reby tops of posts are completely wetted, heitidrge
scale structure is a Cassie-Baxter state, wouldeamt to any change to eq. (12). However, if theosd
transformation was a Wenzel one, a roughness diabe of the large scale structure would have factef

4.4 Curved Features and Re-entrant Shapes

Superhydrophobic effects for curved surfaces hal@@ history because of the origin of the subjadhe
water repellency of fibers and textiles. Indeed, thiginal Cassie-Baxter formula was based on dyilial
shapes and used a formula similar to Eq. (9) with la roughness factor and a Cassie-fraction [@8f
difference is that the roughness factor, whichlye@presents the extra length of wetted area coadpt a
planar projection, is related to how far down aveuis wetted and this itself depends on the locang’'s
law contact angle. Thus, the roughness factor shioeilwritten as=r(x,&x)) indicating a dependence on the
surface chemistry (and liquid since that can a¢sult in a different Young’s law contact angleasl as the
physical location. The impact of this on the wegtinf spherical beads has been considered in gmatitre
[27, 28] and is essentially an application of trensformation law given by eq. [12]. A single layéibeads
is able to suspend a liquid even when the Youngys ¢ontact angle approache$ B there are multiple
layers and the beads are hexagonally close-paekéduid will imbibe into the bead pack under chpy
forces once the contact angle falls below %08t not before unless pressure or gravity is icemed as a
driving force. This contact angle corresponds ®bint at which the penetrating front of the Igjtouches
a bead from the next layer below [29]. The useupleshydrophobic ideas to describe soil, when resghas
bead packs, was first proposed in ref [27] and mecently a complete theoretical analysis baseeqri12)
and an experimental comparison have been carrie§28l Recognition of the importance of inward-(re
entrant) curves, such as observed with bead packe ability of superoleophobic surfaces to suspe
liguids with Young's law contact angles significerivelow 90 has recently been reported in [30].

5. Gradient Superhydrophabic Surfaces

It has long been known that on surfaces with viemgtin surface chemistry droplets move towardsoregof
lower wettability (see ref [31] and references #ig). In an earlier report we suggested that latexdaation

in topography to create a variation in superhydotyptity should also generate droplet motion eveemthe
surface chemistry was homogeneous [1, 32]. A numiderreports have considered this problem
experimentally with varying levels of success [3-and there has been at least one attempt to ntodel
theoretically [33].Lithographic approaches have tended to lead tolelophat are unable to move unless
energy is inputted via, e.g., vibration [33], buick surfaces have been shown to be useful in induci
asymmetric rebounds from impacting droplets [37].

vapour

Figure6. The concept of inducing motion by a gradient inestgdrophobicity achieved using a
variation in lateral scale topography. The magratwd the driving force, given by \(cosf-cosék)
where yy is the liquid-vapor surface tension agdand & are the observed contact angles on the left
and right hand sides of the droplet, must overcoomact angle hysteresis.



The basic concept of lateral gradient forces inegpdrophobicity is shown schematically in fig. 6.
In this case, the horizontal spacing between featig progressively decreased across a surfadeasthe
contact angles at the left-hand and right-handssadehe dropletd, and &, differ by a small amount. The
driving force per unit length of contact line isthy\(cosé-cos,) and, assuming the surface chemistry is
homogeneous, this can be written using the |arah fof the Cassie-Baxter equation as,

Force/length =y, [ f (xg) — f (X, )][1+ cosE.] (24)

Sincexg=x,tr. andx =x,-r. , wherex, is the centre coordinate of the droplet in thetachnplane and. is the
contact diameter which is small, the local Cassietions can be expanded in terms of the grade@gissie
fraction,

Force/length = 2y, r. L+ cos@e)[g—fj (15)
X

X=Xo

If we assume our droplet is a spherical cap wisgmall contact area we can write,

2r, = 2R\/2f (x,)(L+cosh,) (16)

wheref(x,) is the average Cassie fraction between the itdhand right-hand sides of the droplet. Hence, the
force per unit length of contact line becomes,

Force/length =y, 2Ry 2 (x,) L+ cos@e)m(%j (17)
x=x,

For a droplet to move, this force needs to excheddrce arising from contact angle hysteresisr&lage a
range of possible models relating contact angleengsis to the Cassie fraction including one basethe
Cassie-Baxter formula [38] and a more fundamen&ded based model due to Joanny and de Gennes
[39,40]. In the defect based model for contact erylsteresis, the pinning force per unit lengthiven by

the combination y\f(x)logef(x) and so it scales with the density of defects iplidgd by a logarithmic
correction. Using this with eq. (17) and rearraggine find the following condition for the gradientCassie
fraction for motion,

(g ] _ =T 0e) log, f(x,) a8)
X=X,

dx 22 R(L+cosb,)?

This derivation is far from sophisticated and does take into account shape changes around the
entire contact perimeter, which can be expectathémge overall constants, but it does provide st to
understand a number of factors preventing or ifmigamotion. For example, if the average Cassietioa,
f(xo), is made smaller so that the droplet is in angfeo superhydrophobic state, the gradient in Cassie
fraction needed to initiate motion can be smal&milarly, a lower gradient is needed when the sphe
radius,R, is larger. Larger volume droplets roll more egsilot because of gravity, but because the contact
radius,r, is larger. Increasing the Young’s law contactlaradso reduces the need for larger gradientsan th
Cassie fraction.

6. An Example Gradient Surface

Considerations in the previous sections suggestastlated motion and definition of paths should be
possible simply by varying the superhydrophobidityough topographic control and without changing
surface chemistry. In this section we provide ongpke experimental example of such a surface.videly
spaced superhydrophobic surface texture is suremibgt a more narrowly spaced superhydrophobic cairfa
texture a drop should experience a force so thinids to roll onto the area with the more closggced
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texture provided contact angle hysteresis can leecome (fig. 6). The variation in lateral spacingj \ead

to a patterning of the effective surface free epengd hence can be used to define regions and pathse
surface [1]. A similar approach could be used wite Wenzel equation, but here we focus only on the
Cassie-Baxter situation. To investigate this experitally we modified a previously reported
electrodeposition method that uses diffusion lichiégggregation to create a fractally rough supeidptaobic
copper surface because it can produce surfaceaghaw exceptionally low contact angle hysteresid;[4
stabilising even very small droplets on these sadais difficult. We also investigated square pusted
surfaces, but were unable to achieve self-actuatsibn of droplets.

Figure7. Self-initiated rolling of a water droplet on a @@y surface possessing a gradient in
superhydrophobicity. There is no significant oviechlnge in average substrate height from the &mlge
the centre of the copper plate.

Our copper-based surface was produced using a mieeha&antilever device with two small DC
motors to rotate and elevate the substrate whilshg half immersed in a copper electroplating tsmtu(as
described in ref [41]). Samples were produced usiiffgrent combinations of starting substrate miater
anode material, power supply, rotation speed aenhéibn rate. This approach produced copper plaitisa
radial gradient in superhydrophobicitf{L15 in the centre to significantly higher than 16@ the edge) so
that drops would roll to the centre and pool, thusviding a water collection plate. This approacsvighly
successful with small droplets released from a ¢ywhobised needle of a microsyringe at the edgdef t
plate, always starting a self-initiated roll to @entre (fig. 7 is an image sequence showing al sirgplet of
water being deposited and rolling to the centrehewdroplets were released so that they skirtedeahgal
part of the plate, they underwent several trarsisk and forth until they came to rest at the @npfrthe
plate. We characterised our surfaces by contadilgreetry and SEM imaging and established that the
change in vertical height of the surface from etdgeentre (a 2 cm distance) was below2 (fig. 8a). The
contact angle hysteresis was difficult to quanéityoss the sample, but to provide an estimate Iteel the
surface radially such that a droplet could be t#a at locations radially from the centre and then
measured the advancing and receding angles usiigeaprofile view tangential to the radial directio
(contact angle hysteresis is shown in fig. 8b).aMe estimated the tilt angle needed to preveall amd this
was less than®lat the edge of the plate.

a) b)
25 1
w ” 40 5~
S 7 g 30
(8] i (@]
E ° é‘ g 20
+— D —
2 51 < 10 -
k3 e
0 \’_'_‘ T T T 1 0 T T T T = 1
0 5 10 15 20 25 0 5 10 15 20 25
Distance from centre/mm Distance from centre/mm

Figure8. a) Surface topography profile measured along mifferadial lines, b) variations of contact
angle hysteresisy{axis) across sample from centre to edgaxis) estimated using radial view and
tilting of table tangential to radial direction.
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7. Conclusion

In this work we have emphasized that the Wenzajlmoass parameter and the Cassie solid surfacéofract
are quantities local to the three-phase contaetdimd are not global parameters of the substrageesr of the
substrate beneath a droplet. We have shown howutiace free energy derivations that underpin tags/
can provide transformation formula for multiple dg¢im scales and re-entrant surfaces based upon ¢émzal/
and Cassie-Baxter formulae. We have considered thewocal view of the Cassie fraction can provide a
condition for self-actuated droplet motion and hasleown that a simple surface with a gradient in
superhydrophobicity can initiate and direct drophedtion. More complex paths for use within droplet
microfluidics could be designed using these prilesi@nd similar ideas could be used for droplet/énzel
configurations and for hemi-wicking liquids.
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